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ABSTRACT Glacial retreat is changing biogeochemical cycling in the Arctic, where
glacial runoff contributes iron for oceanic shelf primary production. We hypothesize
that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-
organic-matter sediments. This is because low organic matter limits sulfide genera-
tion, allowing iron mobility to the water column instead of precipitation as iron
monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA
gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the
site closer to the glaciers, iron-reducing Desulfuromonadales, iron-oxidizing Gallion-
ella and Mariprofundus, and sulfur-oxidizing Thiotrichales and Epsilonproteobacteria
were abundant above a 12-cm depth. Below this depth, the relative abundances of
sequences for sulfate-reducing Desulfobacteraceae and Desulfobulbaceae increased.
At the outer station, the switch from iron-cycling clades to sulfate reducers occurred
at shallower depths (�5 cm), corresponding to higher sulfate reduction rates. Rela-
tively labile organic matter (shown by �13C and C/N ratios) was more abundant at
this outer site, and ordination analysis suggested that this affected microbial com-
munity structure in surface sediments. Network analysis revealed more correlations
between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal
to the glacier. Together, these results suggest that complex microbial communities
catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sul-
fate reduction is limited due to low availability of organic matter. Diminished sulfate
reduction in upper sediments enables iron to flux into the overlying water, where it
may be transported to the shelf.

IMPORTANCE Glacial runoff is a key source of iron for primary production in the
Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimu-
late phytoplankton blooms that were previously restricted to outer margins. De-
creased sediment delivery and enhanced primary production have been hypothe-
sized to alter sediment biogeochemistry, wherein any free reduced iron that could
potentially be delivered to the shelf will instead become buried with sulfide gener-
ated through microbial sulfate reduction. We support this hypothesis with sequenc-
ing data that showed increases in the relative abundance of sulfate reducing taxa
and sulfate reduction rates with increasing distance from the glaciers in Van Keulen-
fjorden, Svalbard. Community structure was driven by organic geochemistry, sug-
gesting that enhanced input of organic material will stimulate sulfate reduction in
interior fjord sediments as glaciers continue to recede.
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With a warming rate twice the global average, the Arctic is under persistent threat
of climate-linked alterations that involve reduced sea ice cover (1, 2) and accel-

erated glacial retreat (3–6). Glaciers are a major source of iron to offshore environments
(7), where it is an important micronutrient for primary producers (8, 9). Highly produc-
tive Arctic shelf waters represent a considerable carbon dioxide sink that is predicted
to increase with the decline in sea ice cover (10–12). However, models predicting
carbon cycle feedbacks in the Arctic have so far not considered the decreased iron
delivery to the shelf that might coincide with glacial retreat. Although studies have
evaluated the abiotic factors controlling transport and transformation of glacially
derived iron in Arctic environments (13, 14), the biological catalysts controlling iron
transport have only been hypothesized (14, 15).

In most temperate coastal sediments, microbial dissimilatory iron and sulfate re-
ducers remineralize organic matter to carbon dioxide (16–18). Electron donors for
dissimilatory sulfate and iron reduction are H2, formate, acetate, or other volatile fatty
acids produced by microbial fermentation of organic matter (19, 20). This makes the
biogeochemical cycling of carbon, iron, and sulfur tightly linked (17). The reduced iron
and sulfur that result from these processes form iron monosulfide (FeS) or pyrite (FeS2),
which effectively sequester iron in sediments (21).

In Svalbard, glacially derived iron-rich plumes containing reducible iron (oxyhydr)ox-
ides, as well as detrital pyrites, settle in fjord sediments during seasonal melting (14, 15).
Glacial runoff increases turbidity and decreases primary production in fjord waters,
resulting in low inputs of fresh organic matter to the sediments (for examples, see
reference 22). Low organic matter quality and availability result in low sulfate reduction
rates and thus limited sulfide production by sulfate-reducing microbes (14). This
removes the pyrite sink for iron and allows reduced iron to be reoxidized either through
biomixing or by microbial iron oxidizers (23). Thus, reduced iron can be oxidized either
abiotically or via microbial catalysis (24). Reduced iron that evades reoxidation can be
transported to the overlying water and potentially transported offshore, where it may
stimulate primary production (14).

Despite being permanently cold (2.6 to �1.7°C [25]), Svalbard sediments demon-
strate microbial activities (26) and rates of sulfate reduction (27–29) that are compa-
rable to those of temperate sediments. Although the biogeochemical processes have
been well described for many Svalbard fjords, studies on the microorganisms that drive
them have largely been restricted to Smeerenburgfjorden, which has high organic
matter availability and low iron delivery relative to other Svalbard fjords due to the
absence of large glaciers in this fjord. Smeerenburgfjorden sediment has 16S rRNA
genes (30) and isolates (31) from clades within the genera Desulfuromusa, Desulfuromo-
nas, Shewanella, Desulfosarcina, and Desulfovibrio capable of sulfate reduction, iron
reduction, and sulfur oxidation (sometimes with multiple electron acceptors used by
the same isolate). A high diversity of extracellular enzyme targets is paralleled by a high
diversity of heterotrophs, demonstrating a robust organic matter-remineralizing com-
munity fueled by the removal of fermentative products by iron and sulfur reduction (32,
33). The resulting sulfide and reduced iron largely precipitate as iron monosulfide and
pyrite, sequestering them from the water column in this fjord (14).

In contrast to Smeerenburgfjorden, Van Keulenfjorden (Fig. 1) is heavily influenced
by iron-rich sandstone and red conglomerate bedrock, resulting in high sedimentary
iron accumulation and high water column turbidity that decrease primary production
close to the glaciers (for examples, see reference 22). We predict that this geochemical
environment supports enhanced iron-mediated recycling of sulfur species close to the
glaciers. We further predict that the lower availability of organic matter close to the
glaciers results in a diminished role of sulfate reducers, explaining why others (14) have
modeled high iron and/or manganese fluxes into the water column rather than iron
being sequestered as pyrite. We tested these predictions by comparing the abundances
and diversities of likely iron- and sulfur-cycling microorganisms in Van Keulenfjorden
sediment at two sites with different proximities to the glaciers.
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RESULTS AND DISCUSSION
Sediment characteristics and glacial history. Stations AB, AC, and HA in Van

Keulenfjorden were sampled (Fig. 1), with separate cores at each station collected only
a few centimeters apart in August 2016. Sediment was dark gray to black, sticky, and
fine grained; no sulfide smell was ever detected. Gamma activity was detected for age
dating, but non-steady-state input of radioisotopes precluded the use of 210Pb for age
dating (see Fig. S1A in the supplemental material). A distinct 137Cs peak at 16 to 17 cm
below seafloor (cmbsf), however, indicated the year 1963 (Fig. S1B) (34), giving a mean
sediment accumulation rate of 0.31 � 0.02 cm year�1 over the last �50 years at station
AC. Previous measurements in the area have shown a lower sediment accumulation
rate, 0.06 cm year�1 (35, 36). The near absence of 137Cs in the top 10 cm indicates that
this material either is ancient or has not been exposed to the atmosphere. This layer
coincided with a horizon of coarse material, which could have been deposited in a
single slump event that created a layer of older material on top of younger sediments.
Alternatively, it could represent a deposit of glacial material that has been isolated from
the atmosphere.

Porewater iron and manganese. Station HA had the lowest porewater iron con-
centrations, never exceeding 16 nM (Fig. S2A). Values were similarly low within shallow
sediments at station AC, where concentrations remained �70 nM above 12 cmbsf.
Below 12 cm, porewater iron concentrations climbed to 658 nM, in line with previously
reported elevated porewater iron concentrations for station AC (14). Porewater iron at
station AB rose from 24 nM to 227 nM within the first 3 cm and remained fairly steady

FIG 1 Map of Van Keulenfjorden, Svalbard (red box in inset). Locations of stations are marked along with surrounding glaciers, with detailed 10-m satellite
imagery from Sentinel-2 taken on 2 August 2017.
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downcore, reaching a maximum of 328 nM. Porewater manganese concentrations at
station HA were below 50 nM above a 12-cm depth and increased to a maximum of
160 nM at 16.5 cmbsf (Fig. S2B). At the surface at station AC, porewater manganese
measured 120 nM and reached a maximum of 253 nM at 4.5 cmbsf. Below this interval,
values steadily decreased. At station AB, manganese concentrations remained �66 nM.
The elevated concentration of dissolved iron and manganese observed across all
stations may result from the combination of dissimilatory metal reduction and the
abiotic reduction of iron (oxyhydr)oxides and manganese oxides through cycling of
sulfur intermediates generated by microbial reduction of sulfate, the concentrations of
which remained steady down to 20 cmbsf (HA, 26.69 to 27.46 mM; AC, 27.20 to
28.01 mM; AB, 27.05 to 28.97 mM [L. C. Herbert, N. Riedinger, A. B. Michaud, K. Laufer,
H. Røy, B. B. Jørgensen, C. Heilbrun, R. C. Aller, J. K. Cochran, and L. M. Wehrmann,
submitted for publication]).

Organic and isotope geochemistry. Total organic carbon (TOC) values averaged
1.4 wt% � 0.1 wt% at inner station HA, 1.4 wt% � 0.1 wt% at middle station AC, and
1.5 wt% � 0.1 wt% at the outer station AB (Fig. 2A and Table S1). After statistical outliers
were removed (Fig. S3) and when all data from each core were combined, TOC was
higher at outer station AB than at middle station AC (P value of Welsh two-sample t
test � 0.004) and inner station HA (P value of Welsh two-sample t test � 0.0002). Low
TOC content is typical of Svalbard fjords (14, 37), where sedimentary organic matter is
diluted by terrestrial material and turbidity from glacial outflow limits primary produc-
tion (22).

The average isotope compositions of organic carbon (�13Corg) in Van Keulenfjorden
sediment were �26.1‰ � 0.2‰ at station HA, �26.0‰ � 0.3‰ at station AC, and
�25.3‰ � 0.8‰ at station AB (Fig. 2B and Table S1). Carbon-to-nitrogen (C/N) ratio
averages were 13.4 � 0.5 at station HA, 13.4 � 0.5 at station AC, and 12.9 � 0.5 at
station AB (Fig. 2C and Table S1), with an overall average value of �13.0. The isotope
composition of organic matter could be a composite of terrestrially derived coal
(average, �26‰) (38), soil (average, �25‰) (38), C3 land plants (�25 to �35‰) (39),
and marine-derived phytoplankton (�22 to �25‰) (40). The highest isotope compo-
sitions were identified at station AB, with values as high as �24.1‰. This indicates that
a potentially higher fraction of labile, marine phytoplankton drives station AB isotopes
to be heavier than that of the other two stations (Fig. 2D), although the exact
proportions of each type are unable to be discerned from these data alone. Like �13Corg,
the C/N ratios can be used to identify the relative contribution of marine versus
terrestrial sources to organic carbon pools, with C/N ratios of allochthonous, terrestrially
derived organic matter typically �20 and marine-derived organics �6 (37). There is

FIG 2 Organic geochemical data. Downcore profiles of total organic carbon (TOC) (A), organic carbon isotopes of bulk organic matter (�13Corg) (B), carbon to
nitrogen (C/N) ratios (C), and crossplot analysis for sites AB, AC, and HA (D). All data are reported in Table S1.
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general agreement with respect to organic matter source between isotope composition
and C/N ratios; however, at station AB, the C/N ratios are greater than average
phytoplankton values (40). Larger values may reflect either terrestrially derived organic
matter or the preferential removal of nitrogen from bulk organic matter during early
diagenesis in the seabed (41). Differences in TOC and �13Corg between sites are
restricted to above 6 to 7 cm (Fig. 2) and confirm the seaward gradient of increased
carbon amount and lability along the long axis of the fjord observed previously for this
and other nearby fjords (14, 22, 37).

Quantitative PCR. Low DNA extraction yields from station HA sediments precluded
quantitative PCR (qPCR) measurements for this station, although the same methods
were successful at stations AB and AC. Sediments at HA likely had lower microbial
biomasses and/or higher concentrations of PCR inhibitors (e.g., iron). At station AB,
average bacterial 16S rRNA gene copy numbers ranged from 1.33 � 1011 16S rRNA
gene copies g of fresh sediment�1 at 0 to 1 cmbsf to 1.05 � 108 at 18 to 19 cmbsf (Fig.
3A and Table S2). Values extrapolated above the standard curve (1 � 109 copies, black
dashed line) may not be accurate but are at least higher than the �109 cells g of
sediment�1 common in temperate, eutrophic marine sediments (42, 43), even assum-
ing an average of three 16S rRNA gene copies per cell (44). High copy numbers could
be due to limitations in absolute quantifications of qPCR (45). However, the high copies
of the 16S rRNA gene observed in this study are supported by previous high rRNA
recovery from sediments from Hornsund, Svalbard (26), suggesting that rapid redox
cycling may provide enough energy to support microbial biomass as high as in
organic-rich, sulfidic, temperate marine sediments. Archaeal 16S rRNA gene copy
numbers were lower, ranging from a peak of 3.9 � 108 16S rRNA gene copies g of fresh
sediment�1 at 4 to 5 cmbsf to 7.4 � 104 16S rRNA gene copies g of fresh sediment�1

at 18 to 19 cmbsf at station AB (Fig. 3B), in agreement with Smeerenburgfjorden
archaeal qPCR measurements (46). The 16S rRNA gene copy numbers at the outer
station AB decreased as a function of depth (Table S3) and were higher than for station
AC, perhaps reflecting the higher quality and quantity in organic matter here. The large
downcore variability in 16S rRNA gene copy numbers at middle station AC was likely
not due to experimental error, since replicate measurements were not statistically
significantly different (P value of Student’s paired t test � 0.1) but instead may have
resulted from physical processes that disrupt sediment communities and prokaryote
abundance closer to the glaciers, such as highly episodic deposition of sediments with
meltwater plumes (47), bioturbation (27, 48), and glacial surge events (35).

Community composition. After normalization, we generated a total of 52 libraries
across the two stations that produced amplifiable DNA (e.g., AB and AC [Table S4]).
Station HA DNA extraction yields were too low for sequencing. Rarefaction profiles of
16S rRNA gene sequences did not approach a plateau (Fig. S4), suggesting that rare
sequences may have been missed in these sediments. Therefore, we interpreted the
distribution and co-occurrence patters of only the most abundant sequences. Across all
libraries, bacteria comprised the majority of reads (96 to 97% versus archaea at 3 to 4%),
in agreement with qPCR. Most sequences (�25% to 42%) belonged to the Proteobac-
teria phylum (Fig. S5). The next most abundant phylum, Planctomycetes (�10 to 20%),
remained steady downcore at both stations compared to other phyla, such as Bacte-
roidetes. Sequences from Bacteroidetes decreased from 16% in surface sediments to 3%
relative abundance at both stations, likely due to oxygen limitation in the anoxic
sediments.

Community composition across all samples was described mainly by the variability
of C/N ratios, �13Corg, and depth, suggesting vertical stratification of sediment com-
munities (Spearman correlation � 0.18). Marginal effects between these variables were
not significant (P � 0.05), indicating independence between factors. Nonmetric multi-
dimensional scaling (NMDS) analysis showed overall good correspondence in commu-
nity composition between depth intervals from the same site from different cores (Fig.
4). Compositional differences between sites were largely explained by C/N ratio and
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TOC, which separated shallow AC and AB communities from each other in ordination
space (Fig. 4). Samples deeper than 7.5 cm at AB and 10.5 cm at AC converged together
toward �13Corg and depth vectors, suggesting that site-to-site differences in commu-
nities are restricted mainly to shallow sediments above 7 to 10 cm, where TOC and
�13Corg composition differences between stations were observed (Fig. 2).

At both stations, sequences related to anaerobic bacteria likely participating in in
situ cycling of iron and sulfur species were present, including the deltaproteobacterial
families Desulfobacteraceae and Desulfobulbaceae (Fig. S6). High Desulfobacteraceae
relative abundance was shown previously in Smeerenburgfjorden sediment, with the
genera Desulfosarcina, Desulfofrigus, and Desulfococcus as the most abundant sulfate

FIG 3 Downcore abundance of the 16S rRNA gene for bacteria (A and C) and archaea (B and D). Average values
between technical duplicates are shown for cores AB and AC. All values are reported in Table S2. The dashed line
indicates extrapolated values modeled beyond the standard curve.
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reducers (30, 49). However, unlike for Smeerenburgfjorden, where Desulfobulbaceae
were previously not detected, Desulfobulbaceae sequences were in high relative abun-
dance in most of our libraries. Sequences related to known sulfate reducers, such as
Desulfococcus and Desulfosarcina, were most abundant within the top 10 cm of the
sediment at station AB, while at station AC, their highest abundance occurred deeper,
at 17.5 cm (Fig. 5). Members of Desulfococcus and Desulfosarcina are able to couple the
reduction of oxidized sulfur compounds, such as sulfate and sulfite, to the oxidation of
volatile fatty acids (50, 51), aromatic compounds (52–54), and H2 (51, 55). Increases in
the relative sequence abundance of Desulfococcus and Desulfosarcina within uppermost
AB sediments coincided with measurements of sulfate reduction rates (SRR), which
increased from 3 nmol cm�3 day�1 within the top 2 cm to 53 nmol cm�3 day�1 at 2.5
cmbsf (Fig. S7A). The lack of replicate measurements prevents us from assigning too
much importance to the 2.5-cm interval; however, the observation that sediments
above 5 cm at station AB have some of the highest TOC concentrations (Fig. 2A)
suggests that organic electron donors were sufficient to stimulate sulfate reduction at
these shallow depths. Directly below this interval, SRR dropped to �20 nmol cm�3

day�1 and continued to decline with depth to 9 nmol cm�3 day�1 at 14.5 cmbsf. Like
station AB, SRR at station AC was lowest in the uppermost sediment layers. However,
SRR remained low throughout most of the core (�10 nmol cm�3 day�1 [Fig. S7B]) and
the maximum value was observed deep in the core at 18.5 cmbsf (19 � 25 nmol cm�3

day�1).
The trend of increased sulfate reduction beyond 14.5 cm is complicated by incon-

sistent replicate measurements, suggesting that there is heterogeneity in the distribu-
tion of organic electron donors or H2 at station AC. Support for such heterogeneity
comes from H2 concentrations, which were low throughout most of the AC core, only
exceeding 0.8 nM past a 15-cm depth (Fig. S7C). If H2 is a significant electron donor for
sulfate reduction in these sediments, fueling sulfate reducers like Sva0081 sediment

FIG 4 Nonmetric multidimensional scaling (NMDS) plot with environmental and geochemical variables as vectors
describing the composition of microbial communities at stations AB and AC.
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group which has been suggested through metagenomic and single cell genome
analysis to be an important scavenger of H2 in marine sediments (56), then an SRR
above a 15-cm depth at AC was perhaps suppressed by limited availability of H2.
Concentrations of H2 could be kept low by active microbial iron reduction supported
by a pool of highly reactive, bioavailable iron, which has been suggested for another
western Svalbard fjord (K. Laufer, A. B. Michaud, H. Røy, and B. B. Jørgensen, submitted
for publication).

Suppression of shallow sulfate reduction is supported by sequence data, which
showed that taxa capable of sulfate reduction using H2 at station AC increased from
�0.2% at the surface to �5% at 17.5 cm at the expense of sequences related to iron
reducers, including the Desulfuromonadales (genera Desulfuromusa, Geopsychrobacter,
Geothermobacter, and Geobacter) (Fig. 5B). Geobacteraceae were less abundant in
shallow depths (�5 cmbsf [Fig. 5A]) at station AB than at station AC (�15 cmbsf [Fig.
5B]). Geobacteraceae contain numerous adaptations that allow them to thrive in
iron-rich anoxic marine sediments, including the ability to oxidize common fermenta-
tion products and H2 while reducing Fe(III) or Mn(IV) (57, 58). The distribution of iron
reducers like Geobacteraceae may be driven by differences in iron reactivity between
the middle and outer sites that cause rapid exhaustion of reactive Fe(III) at station AB.
Previous studies have shown that iron reactivity increases farther from glacial inputs,
either because the initial iron deposited is more reactive or because reactivity increases
with postdepositional reworking (14). So although outer station AB has a lower iron
accumulation rate (14), the iron that is deposited here may be more reactive than at
middle station AC, permitting spatial differences in iron accumulation and bioavailabil-
ity to play important roles in biogeochemical cycling of iron and sulfur in Van Keulen-
fjorden, which has been noted within nearby Van Mijenfjorden (15).

The relative shoaling of the zone of potential sulfate reducers at station AB com-
pared to station AC may be driven by the combination of microbial removal of highly
reactive Fe(III) discussed above and the formation of iron monosulfides from sulfide
generated by microbial sulfate reduction (59). Vertical zonation between sequences

FIG 5 Relative abundances of 16S rRNA gene sequences of taxa of interest at stations AB (A) and AC (B). Sequences are sorted by predicted metabolic guild:
sulfate reducers, sulfate/iron reducers, iron reducers, sulfur oxidizers, and iron oxidizers. Uncultured genera for which we predict metabolism are marked with
a pink bar. The number next to the genus name on the x axis indicates which core the sequences are from. See text for discussion about metabolic plasticity
and the use of multiple electron acceptors across these clades.
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related to iron reducers and those related to sulfate reducers agrees with thermody-
namic sorting based upon energy yield of reduction with Fe(III) and sulfur species (60,
61). However, recent studies have shown that the distribution of iron-reducing bacteria
is decoupled from traditional geochemical zonation in sediments and may be driven
instead by microniche distribution and metabolic flexibility (62). In fact, the relative
read abundance for Desulfuromusa displayed no observable trend with depth, perhaps
because of the potential to use different electron acceptors experienced with depth,
including Fe(III), Mn(IV), elemental sulfur, and nitrate (57, 63). Likewise, Desulfobulbus
sequences did not show strong vertical sorting at either site but instead were highly
abundant at both stations and only slightly increased with depth at AC (Fig. 5). The
metabolic diversity of Desulfobulbus, including dissimilatory iron reduction (64), oxida-
tion of elemental sulfur (65), sulfur disproportionation (66), and sulfate and sulfite
reduction in the complete oxidation of organic matter (67), may allow Desulfobulbus to
continue to use sulfate or other electron acceptors for growth after the exhaustion of
highly reactive Fe(III) at �5 cm at AB and �10 cm at AC. This further highlights the
potential for multiple controls on microbial distribution in the sediment.

Like Desulfobulbus, the Sva1033 sediment group had high sequence abundance at
most depths, with little systematic variation downcore at either site. Sva1033 is an
uncultured genus of the Desulfuromondales, first identified through 16S rRNA gene
clone libraries of Smeerenburgfjorden sediment (29). Its closest relative by 16S rRNA
gene identity (93.7%) is Desulfuromonas palmitatis, a dissimilatory iron reducer capable
of oxidizing long-chain fatty acids (68). Because Sva1033 remains uncultured, the extent
of its metabolic potential remains unknown; however, we hypothesize that it shares a
metabolic mode similar to that of Desulfobulbus in these sediments and may rely on
metabolic switching from metal reduction to sulfate reduction with depth.

Clades related to known sulfur oxidizers were also present at both sites but were
more abundant at station AC. Sequences for Arcobacter, Sulfurimonas, and Sulfurovum
(Epsilonproteobacteria), Cocleimonas (Gammaproteobacteria), and Thiobacillus (Betapro-
teobacteria) all maintained relatively high sequence abundance with depth at AC (Fig.
5). These groups typically use oxygen or nitrate to oxidize sulfur intermediates, such as
thiosulfate and elemental sulfur (69, 70), and therefore rely on abiotic oxidation of
sulfide with reducible iron. If reducible iron is found deeper in station AC sediment,
redox conditions remain suboxic, and a cryptic iron-sulfur cycle replenishes sulfur
intermediates (15, 71). Thus, cryptic iron-sulfur cycling at station AC could provide a
consistent source of sulfur intermediates that are useful in biological sulfur oxidation,
while shallow exhaustion of reducible iron at station AB prevents high abundance of
these clades. Sulfur intermediates generated from combined biological and abiotic
reoxidation of sulfide can be oxidized further to sulfate by microbial sulfur dispropor-
tionation by groups like Desulfocapsa, which was present at low sequence abundance
in our libraries (�0.05%). Together with abiotic transformations, this may explain the
conservation of porewater sulfate with depth previously noted within Van Keulenf-
jorden sediments (14).

Reduced iron can be reoxidized both abiotically, through interactions with oxygen
and manganese oxides, and biotically, with microbial iron oxidizers such as Maripro-
fundus and Gallionella that use nitrate or oxygen delivered through biomixing. Maripro-
fundus sequences were more abundant and penetrated deeper at station AC, much like
their sulfide-oxidizing counterparts (Fig. 5). Inconsistent depth trends of Mariprofundus
sequences between cores taken at the same site may be related to heterogenous
distribution of microniches and electron acceptors that support growth. The two
isolates from this group, Mariprofundus ferrooxydans and Mariprofundus micogutta,
oxidize Fe(II) with molecular oxygen under microaerophilic conditions (72–74), making
growth of this group contingent upon the presence of low-oxygen microniches that
can be generated through bioturbation and bottom-water delivery. Because the pen-
etration of oxygen is likely only millimeters (48), the presence of deep Mariprofundus
sequences indicates that biomixing plays an important role in delivering oxygen to the
subsurface. Like for Mariprofundus, Gallionella sequences were more abundant at
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station AC. However, while Mariprofundus sequences extended to 15 cmbsf at AB,
Gallionella sequences were mostly restricted to the top 2 cm at this station (Fig. 5A).
Because station AB is situated near the source of marine waters to the fjord, these
observations agree with environmental studies suggesting that Mariprofundus is a strict
marine iron oxidizer, while Gallionella is restricted to freshwater systems or maintains
low abundance in marine systems (23, 75).

Microbial networks. In order to investigate potential emergent properties of these
complex microbial ecosystems and generate hypotheses about in situ interactions,
networks were built using the most abundant (top 30) operational taxonomic units
(OTUs; 97% similarity) and those OTUs with cultured representatives that cycle iron
and/or sulfur. Individual microbial co-occurrence networks were generated for each
core (Fig. S8) and then merged to find replicated patterns of co-occurrence between
taxa and geochemical data (Fig. 6; cf. reference 76). Neither geochemical data (TOC,
�13Corg, C/N, [H2], [Fe], or [Mn]) nor SRR was found to have a statistically significant
relationship with any microbial taxa; instead, connections were limited to interactions
between microbial taxa. Therefore, although some of these parameters (e.g., C/N ratios
and �13Corg) were correlated with overall microbial community composition (Fig. 4), the
variations of these geochemical parameters on a centimeter scale did not drive changes
in relative sequence abundances of individual clades.

FIG 6 Merged microbial co-occurrence networks. Individual network characteristics have been combined to show merged networks for outer station AB (A)
and middle station AC (B) to uncover the core microbiome features at each station. Isolated nodes have been removed for clarity. Each node represents an OTU,
with color indicating class-level taxonomy. Genus names are overlaid on each node and edge relationships are indicated with solid and dashed lines for positive
and negative connections, respectively. Green arrows indicate the nodes at each site with greatest betweenness.
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Deltaproteobacteria from sulfate- and iron-reducing genera were the most common
nodes in both the AB and AC networks (8 out of 16 nodes in AB and 11 out of 30 nodes
in AC [Table S5]). The AB network contained fewer nodes than the AC network, so it
may represent a more stable and established community. The greater taxonomic
diversity and larger number of relatively rare-abundance OTUs observed within the AC
network may reflect the differences in dissolved nutrients and/or microbial inocula at
this station and station AB. Overall, total sequence abundance of an OTU did not dictate
the likelihood of being included in a network, and interestingly, the highly abundant
group Sva1033 (�1.5% read abundance at both sites) was restricted to the AC network.
Here, Sva1033 nodes were connected to a diverse set of Deltaproteobacteria (Desulfo-
coccus, SEEP-SRB4, Desulfopila, and Desulfobulbus), each of which was highly connected
to other nodes. This suggests that uncultured Sva1033 may have a physiological role
(iron or sulfate reduction) similar to those of the cultured groups with which it shares
edges at station AC. We tested if relatively rare taxa are important members of the
community at each site by calculating betweenness centrality, or average number of
shortest paths, for each networked OTU. The betweenness centrality metric can be used
to identify key members of a microbial community and help generate hypotheses
about the functional role of these microorganisms in situ (77). At station AB, a relatively
low-abundance Nitrosomonas OTU had the highest betweenness centrality (Fig. 6A,
green arrow). Members of the Nitrosomonas are chemolithoautotrophs that gain energy
through the oxidation of ammonia to nitrate (78) and are crucial nitrogen cyclers in
marine sediments (79–81). Nitrate generated by Nitrosomonas could perhaps benefit
members of the community that rely on nitrate for their metabolism, such as iron or
sulfur oxidizers, allowing this relatively rare OTU to impart control on co-occurrence
patterns between other taxa. At station AC, a Desulfobulbus OTU had the highest
betweenness centrality (Fig. 6B, green arrow) and the most connections with other
taxa, suggesting that this OTU represents a “hub” that connects many nodes that are
not directly connected to each other (82). Future work should explore the in situ
metabolic activity of Desulfobulbus in these sediments using incubation approaches,
targeted genomics, and/or metabolomics to identify any potential syntrophic interac-
tions with microbial counterparts.

Our network results suggest that intrinsic structure of microbial communities be-
tween sites would perhaps be overlooked if sequence abundance was evaluated alone.
Together these network results suggest site-specific co-occurrence patterns for the
same OTUs, supporting the idea that distance from the glacier was a controlling factor
on interactions between microbial taxa, even at high taxonomic resolution. This could
be due to differences in environmental controls that foster microbial competition (83)
and/or cross-feeding (84).

Conclusions. Our study sheds light on the biological catalysts controlling iron
cycling and ultimately transport to the open ocean along western Svalbard. We predict
that the growth of sulfate reducers like Desulfobacteraceae and Desulfobulbaceae will be
stimulated in shallow sediments as glaciers continue to recede and sedimentary TOC
becomes more plentiful closer to the head of Van Keulenfjorden. The sulfide generated
by microbial sulfate reduction can become reoxidized by sulfur oxidizers, such as
Thiobacillus or Sulfurimonas. However, should microbial sulfate reduction outpace
microbial sulfur oxidation, excess sulfide will precipitate with reduced iron to form iron
sulfide minerals, decreasing the amount of iron being transported to the shelf. De-
creased overall export of reduced iron may impact primary production along the shelf,
where removal of this key micronutrient could decrease phytoplankton populations
that represent a large sink for carbon dioxide in the atmosphere.

MATERIALS AND METHODS
Sample collection. Cores from stations AB, AC, and HA in Van Keulenfjorden were collected in

August 2016. Polycarbonate core liners were used to subsample Haps corers (KC Denmark A/S) (85) at
each site, with each core (e.g., AB.1, AB.2, and AB.3 at site AB) taken centimeters apart, down to a depth
of �20 cmbsf. Cores were stored at 4°C until they were ready for processing within 8 h. A metal plate and
collar were used to collect sediment samples at 1-cm intervals. Cores destined for molecular work (AB.1,
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AB.2, AC.1, and AC.2) were processed sterilely outside, where air temperatures remained near in situ
temperatures (�4°C). Cores for organic and isotope analyses and H2 (HA.3, AB.3, and AC.3) were
processed inside the Kings Bay Marine Lab at room temperature. SRR samples were maintained at low
temperature. Sediment samples for organic geochemistry and 16S rRNA gene analysis were stored at
�80°C until processed.

Sedimentation accumulation rate. Frozen sediment was shipped on dry ice to University of
Kentucky for analysis of natural and anthropogenic gamma emitters via low-level gamma spectroscopy.
Sediment accumulation was then calculated from the depth where the maximum activity of 137Cs was
found, divided by the time since 1963. This model assumes limited vertical mobility of cesium in
sediments (86–88).

Porewater iron and manganese. Values of porewater Fe and Mn originate from different cores from
the same station taken during the same campaign in predrilled plastic core liners with a gravity corer
device. Porewater was collected anoxically using Rhizon samplers and attached syringes (89, 90).
Porewater aliquots for trace metal analysis were separated using plastic syringes and preserved in small
Nalgene bottles with trace-metal-grade nitric acid (2% [vol/vol]). Measurements were made at Oklahoma
State University in Stillwater, OK, using a Thermo Fisher iCAP Qc inductively coupled plasma-mass
spectrometer (ICP-MS). Standards were made to match the porewater matrix by adding the appropriate
amount of sodium chloride. Samples were diluted with trace-metal-grade nitric acid and analyzed in
random order, along with a standard reference solution (NIST SRM 1643f). Based on the NIST standard
which was measured at least 3 times per run, the analytical precision of the porewater analysis was better
than 5%. Where data were missing for network analysis, we used averages between adjacent depths.

Organic and isotope geochemistry. Sediment for analysis of organic matter was freeze-dried after
thawing from �80°C and subjected to acid fumigation overnight before analysis (91). Total organic
carbon (TOC) and isotope compositions of carbon and nitrogen (C/N) from bulk organic matter were
measured using a Thermo-Finnigan Delta XL mass spectrometer coupled to an elemental analyzer at the
University of Tennessee, Knoxville. C/N ratios were calculated by dividing percent C by percent N.
Isotopic values were calibrated against the USGS40 and USGS41 international standards. In-house
standard sets were run every 12 samples. Outliers were determined using Cook’s distance (92) in R (93).
Across multiple runs, 1 standard deviation was 0.1 to 0.2‰ for �13Corg, 1.1 to 1.8% for N, and 1.0 to 2.2%
for C.

Quantitative PCR. Genomic DNA was extracted from approximately 2 g of Svalbard sediment per
depth using the RNeasy Power Soil kit for RNA extraction with the DNA accessory kit (Qiagen, Valencia,
CA). DNA extracts were stored at �80°C until required. We tested 1:1 dilutions and 1:40 dilutions to
identify the most suitable concentrations of DNA for qPCR but found that undiluted DNA extracts
provided the lowest threshold cycle (CT) values. Total 16S rRNA gene copy numbers of bacteria and
archaea were quantified with qPCR using domain-specific primers. The sequences for the bacterial primer
pair Bac340f/Bac515r were 5=-TCCTACGGGAGGCAGCAGT-3= for the forward primer and 5=-GGACTACCA
GGGTATCTAATCCTGTT-3= for the reverse primer (94). The sequences for the archaeal primer pair
Arch806f/Arch915r were 5=-ATTAGATACCCSBGTAGTCC-3= (where S is either G or C and B is either C, G,
or T) for the forward primer and 5=-GTGCTCCCCCGCCAATTCCT-3= for the reverse primer (95, 96).
Extracted DNA was amplified with a Bio-Rad DNA Engine Option 2 system (Applied Biosystems, Foster
City, CA) using SYBR green chemistry (Invitrogen master mix). Serial dilutions of extracted plasmids
containing amplified partial 16S rRNA genes were used as standards for bacteria and archaea, ranging
from 102 to 109 copies/�l. Nuclease-free water was used as a negative control and undiluted DNA
extracts were used as templates. Results of qPCR were rejected if the R2 of the standard curve was below
0.95 or if there was evidence of primer dimers within the melt curve. The quantification limit of qPCR was
defined as fluorescence CT numbers well within those of the simultaneously run standard curve and
being at least 3 values below the nontemplate control CT. Gene copy numbers were converted into gene
copies per gram of fresh sediment by accounting for how much sediment was used for each extraction.
For each depth within each core, two technical replicates were performed. To test for association
between average copy number and sediment depth, linear models and Spearman’s rho were calculated
in R using lm(Average � Depth) and cor.test, respectively.

16S rRNA gene libraries. Taxonomic diversity of Svalbard sediments was evaluated using 16S rRNA
gene library sequencing. Genomic DNA extracts from AB.1, AB.2, AC.1, and AC.2 were used to generate
16S rRNA amplicon libraries (extracts from HA were not amplifiable). Phusion master mix (Thermo Fisher)
was used with primer set 515F/806R (97) at the Center for Environmental Biology at The University of
Tennessee, Knoxville, for amplification. Reads were sequenced with Illumina MiSeq and trimmed for
quality with Trimmomatic using a window 10 bp wide and a minimum phred score of 28 (98). Trimmed
reads were then processed in mothur 1.35.1 (99) using the computational cluster at the Bioinformatics
Resource Facility at The University of Tennessee, Knoxville. OTUs were clustered de novo at the 97%
similarity level with the SILVA release 123 (100). Rarefaction analysis was calculated in mothur with
rarefaction.single, and reads were normalized with normalize.shared (norm � 60,000).

Ordination analysis was conducted using a combination of Phyloseq (101) and the vegan package in
R. NMDS ordination was built using the Bray-Curtis distance metric for 52 samples that had libraries large
enough for comparison (Table S4). Geochemical vectors were fit with envfit, and the best parameters to
explain the model were determined with bioenv using Spearman correlation and the manhattan metric
of Bray-Curtis dissimilarity. Marginal effects of these parameters were determined with dbrda() with a
significance cutoff (alpha) of 0.05.

Hydrogen. Samples for hydrogen analysis consisted of 1 ml of sediment placed into a dark glass
serum vial which was then crimp sealed and gassed with N2 for 15 min prior to storage at 4°C. Headspace
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was measured with glass syringes on a Peak Performer gas chromatograph (GC) with mercuric chloride
detector (Peak Laboratories, Mountain View, CA) at The University of Tennessee, Knoxville, after 4 to 7
days.

Microbial network analysis. To evaluate the co-correlation of target OTUs, we generated microbial
networks using relative abundance at the OTU level from all four cores with the Pearson correlation
coefficient calculated in the extended local similarity analysis (eLSA) program (102, 103). While abun-
dance measures with 16S rRNA genes are likely not true measures of total abundance, as primer bias can
underrepresent or overrepresent specific sequences (104), relative sequence abundance may still be
related to actual abundance in situ. Networks excluded OTUs whose sum did not reach 0.1% of reads
across all libraries from a core. Percent Z normalization was used in network construction and a strict P
value cutoff of �0.001 was used to determine statistically significant co-occurrence patterns, which
ranged in Pearson’s r values from �0.95 to 1. At this P value, the false-discovery rate, or q-estimation,
was 0.

Networks were visualized with Cytoscape 3.5.1 (105). Betweenness was calculated with the Analyze
Network module in Cytoscape by treating edges as undirected (106). The randomness of the generated
networks was tested through examination of the degree distribution. Degree is a node attribute that is
simply the sum of all direct connections involving that node. As random networks are characterized by
a degree distribution fitting a Poisson distribution (106), we used a chi square (�2) test to determine the
goodness of fit between observed and expected degree distributions if originating from a Poisson
distribution and found that our networks were not random (107).

Sulfate reduction rates. In situ sulfate reduction rates (SRR) were determined via the whole-core
injection method (108) in 2.5-cm-wide and ca. 20-cm-long subcores that were taken from a HAPs core.
Per 1-cm depth interval, 50 kBq of [35S]SO4

2� was injected through predrilled holes in the coring tube
that were sealed with polyurethane-based elastic glue. Whole cores were incubated for 14 to 16 h at 2°C.
The incubation was stopped by splicing the core in 1-cm sections and mixing each section with 10 ml
of 10% zinc acetate and immediate freezing. Samples were stored at �20°C before radiolabeled total
reduced inorganic sulfur (TRIS) was recovered and separated from [35S]SO4

2� using the cold chromium
distillation method (109). Radioactivities of the distillate and of sulfate in the sample were analyzed using
scintillation counting and sulfate reduction rates were calculated according to the method of Jørgensen
(108).

Accession number(s). Raw sequences for all 16S rRNA gene libraries are publicly available in the
NCBI database under BioProject PRJNA493859.
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